火気を使用しない極小口径管推進工法の改良 および施工実績について

キーワード

極小口径管推進工法、無火気施工、既設マンホール、管継ぎ手部、止水性、止水材料

1. はじめに

地中送電用管路の設備形成において、極小口径管推 進工法により施工する際、一般的には発進および到達 立坑を設けて施工を実施している。

ただし, 都心部やその周辺地域において地中送電用 管路や電力用マンホール等の地中送電用ネットワーク 網の構築・整備が進むにつれ、昨今では、コストダウ ンの観点から、既設電力用マンホールの内部からの極 小口径管推進工法の施工により地中送電用管路の設備 形成を実施するという事例1)が散見されてきている。

しかし、既設電力用マンホール内部には電力用ケー ブルや通信用ケーブル等が数多く収容されている設備 もあり、極小口径管推進工法の施工時に使用する火気 がケーブルに延焼することにより、電力の供給支障に 伴う大規模停電等のリスクも想定される。

そこで、本稿では、極小口径管推進工法において火 気を使用しない工法に改良した施工実績について報告 する。

2. 現状施工

現状. 極小口径管推進工法にSGP. STPG等の鋼管 を用いる場合の管継ぎ手部の接続方法はネジの有無に より異なる。

一般的には図-1に示すように、ネジの無い鋼管の

場合は管にスリーブを設置後全周溶接し、ネジの有る 鋼管の場合はネジ接合後点溶接をしており、いずれの 場合も管継ぎ手部を接続する際には、写真-1に示す ようにガス溶接等の火気を用いた施工を実施している のが現状である。

赤泅

営業部エンジニアリングチーム

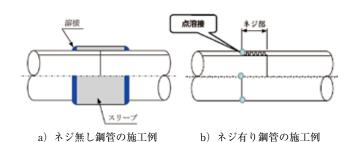


図-1 管継ぎ手部

写真-1 溶接状況

8